Radar-Based Hand Gesture Recognition Using Spiking Neural Networks

نویسندگان

چکیده

We propose a spiking neural network (SNN) approach for radar-based hand gesture recognition (HGR), using frequency modulated continuous wave (FMCW) millimeter-wave radar. After pre-processing the range-Doppler or micro-Doppler radar signal, we use signal-to-spike conversion scheme that encodes Doppler maps into spike trains. The trains are fed recurrent network, liquid state machine (LSM). readout signal from SNN is then used as input different classifiers comparison, including logistic regression, random forest, and support vector (SVM). Using machines of less than 1000 neurons, achieve better state-of-the-art results on two publicly available reference datasets, reaching over 98% accuracy 10-fold cross-validation both data sets.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Static hand gesture recognition using neural networks

This paper presents a novel technique for hand gesture recognition through human–computer interaction based on shape analysis. The main objective of this effort is to explore the utility of a neural network-based approach to the recognition of the hand gestures. A unique multi-layer perception of neural network is built for classification by using backpropagation learning algorithm. The goal of...

متن کامل

Human Computer Interaction Using Vision-Based Hand Gesture Recognition

With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...

متن کامل

Doppler-Radar Based Hand Gesture Recognition System Using Convolutional Neural Networks

Hand gesture recognition has long been a study topic in the field of Human Computer Interaction. Traditional camera-based hand gesture recognition systems can not work properly under dark circumstances. In this paper, a DopplerRadar based hand gesture recognition system using convolutional neural networks is proposed. A cost-effective Doppler radar sensor with dual receiving channels at 5.8GHz ...

متن کامل

Human Computer Interaction Using Vision-Based Hand Gesture Recognition

With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2021

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics10121405